摩尔芯闻 > 行业新闻 > 半导体 > 进行低压测量对示波器探头的考虑

进行低压测量对示波器探头的考虑

eefocus ·2020-04-18 00:00·电子工程世界
阅读:1300

几乎所有示波器都标配了10X衰减无源探头,因为这种探头是在多种应用中进行测量的最佳选择。为覆盖范围最广泛的应用,通用探头的带宽一般在DC-500MHz,一般能够测量几百伏的电压。进行低压测量的用户通常会落入使用示波器标配10X探头的陷阱——最后得到的结果并不准确,因为10X无源探头在毫伏级的低压范围内并不能准确地进行测量。


在进行低压测量时,必需考虑示波器的灵敏度、探头衰减、系统噪声、探头接地、探头输入阻抗、AC耦合、探头偏置和探头带宽。


最大化示波器的垂直灵敏度

垂直灵敏度表明了示波器垂直放大器能把信号放大到多大。在大多数泰克示波器上,在没有连接探头的情况下,最灵敏的垂直设置是1mV/格。如图1所示,在连接2X探头时(通道1),测量系统的最小垂直标度因数是2mV/格;在连接10X探头时(通道2),最小的垂直标度因数是10mV/格。

11.gif

图1:2X探头(CH1)和10X探头(CH2)最低的系统垂直分辨率。


许多泰克示波器有10个竖格。在10mV/格设置的系统中使用10X探头时,100mV信号会把屏幕填满(10mV/格×10格)。我们仍使用10mV作为低压测量实例。在使用10X衰减探头时,把示波器通道调节到最小垂直标度10mV/格,这个信号在屏幕上只跨过了1个竖格。这个实例在图2中显示为通道2上的蓝色轨迹。但是,在使用2X探头测量同样这个10mV信号时,它将跨过5个竖格,因为这条通道的垂直灵敏度可以调节到2mV/格。图2也显示了使用2X衰减进行的10mV测量,如图2上的黄色轨迹所示。

22.gif

图2:探头(CH1)和10X探头(CH2)进行的10mV测量。


用户应一直设置“V/格”,以便信号几乎填满整个屏幕。否则,就不能更详细地查看信号,示波器数字化器便得不到全面的利用。在上面的10mV测量实例中,在连接10X衰减探头时,我们只利用了示波器数字化器十分之一的处理能力,因为信号在屏幕上只跨过了1个竖格。在2X衰减探头时,信号能够跨过5个竖格,现在利用了数字化器一半的处理能力。利用的数字化器处理能力越强,捕获的信号分辨率越高。


改善测量系统的信噪比

探头的衰减因数(即1X、10X、100X)是探头使示波器输入信号幅度降低的量。1X探头没有降低或衰减输入信号,而10X探头则会在示波器输入上把输入信号降低到信号幅度的1/10。如图3所示,输入电压到达示波器输入,除以探头的衰减因数,表示为VIN除以衰减。

33.gif

图3:输入信号、探头衰减和随机噪声。


探头衰减扩大了示波器的测量范围,可以测量更大幅度的信号。但是,在测量低压信号时,探头使信号衰减,然后示波器放大信号,导致信噪比下降。信噪比公式(SNR)为:

1.gif

其中,Attenuation为探头的衰减因数;VNoise一般用示波器产品技术资料中的随机噪声表示。


将此处和以下两式中的“SRN”改为“SNR”


为使用公式1,必须确定VIN和VNoise。例如,如果在低压测量中为VIN分配的值为10mV,那么示波器的设置为1mV/格,而不管探头衰减是多少;又例如,示波器的随机噪声指标为150uV+8%的“V/格”设置,在1mV/格设置下,VNoise为230uV。使用这些VIN、VNoise和探头衰减值,可计算出10X探头和2X探头的SNR:

使用10X探头计算SNR:

2.gif

使用2X探头计算SNR:

3.gif

在10mV测量中,2X探头的信噪比为21.7:1;10X探头的信噪比为4.3:1。很明显,衰减较低的探头提高了测量系统的信噪比,因此,这种探头更适合进行低压测量。


谨慎使用长地线,特别是在变压器和开关单元附近


长地线非常方便,因为用户只需连接接地一次,便可在地线范围内探测多个测试点。但是,任何一条导线都会分发电感,分发的电感会对AC信号做出反应。信号频率越高,对AC电流流动的阻碍性越大。地线的电感与探头输入电容相互作用,在某个频率上将导致振铃。下面的公式描述了振铃频率:

1.gif

其中:f是振铃频率;L是探头接地解决方案引起的电感;C是探头的输入电容。

这个振铃是不可避免的,可能表现为幅度衰落的正弦曲线。在地线长度提高时,电感会提高,测得信号将在较低的频率上振铃。通过限制探头的接地长度或选择输入电容较低的探头,可以降低振铃的影响。


改善振铃频率的一个简单的解决方案是使用一条较短的地线,如短接地弹簧。图4左侧显示了采用短接地弹簧的探头图片。通过使用短接地弹簧,电感降低,C值下降,便能把电感振铃推过关心的频率范围。

44.gif

图4:安装在机箱上的测试插座。


电感量最低、同时又能获得安全接地连接的接地解决方案,是安装在探头尖端机箱上的测试插座(泰克部件编号131-4210-00),如图4右侧所示。插座可以插入用户的测试电路板中,把地线长度缩短到接近于零。


地线还可以作为衰减器或环路,引起电容和磁性耦合效应。缩短地线长度还有一个好处,就是减少受到变压器和开关器件附近的放射性辐射。如果要求较长的地线,那么用户应注意,不要把地线放在变压器或者开关器件附近。


使用高输入阻抗的探头

在把探头插入电路时,探头会对被测电路产生一定的影响。探头拥有电阻单元、电感单元和电容单元,可以想象,如果电阻器、电容器或电感器被插在测量点上,那么,它会改变电路的特点。用户应该了解探头的输入阻抗指标,以使探头负荷的影响达到最小。


电阻单元、电感单元和电容单元相互影响,产生随信号频率变化的总探头阻抗。为使探头负荷达到最小,用户应使用最短的地线,以最大限度地降低电感,同时还应使用低输入电容的探头。有源探头或差分探头将提供最低的输入电容。另一个选项可能是低输入电容无源探头(如TPP0502),这是业内唯一的低衰减、高带宽、高阻抗无源探头,适合在拥有高频率成分的信号上进行低压测量。上面公式2所示的振铃频率也说明了这种关系,其表现为频率、电感和探头输入电容之间的关系。


使用示波器的AC耦合功能,或调节探头偏置

一个测量挑战是测量位于DC信号顶部的低压AC信号。有多种选项可以帮助用户把重点放在信号的AC部分。在使用有源探头时,用户应使用探头的偏置控制功能——可以使用探头偏置,去掉探头放大器中的DC成分。通过去掉信号的DC成分,用户现在可以准确地评估和测量信号的AC成分。在部分差分探头上,泰克提供了一种称为DC抑制(DC Reject)的功能。DC Reject自动生成内部偏置,抵消信号的DC成分。


在使用低衰减无源探头观察这些类型的AC信号时,用户应使用示波器上的AC耦合功能封锁DC成分,只显示AC信号。例如,通过在示波器信号路径上启用AC耦合并使用TPP0502,工程师可以评估信号的AC成分,最高分辨率可以达到2mV。这种方法允许用户分离出AC成分,而又不必增加DC偏置。在某些情况下,使用有源探头是不可能进行这类测量的,因为测量系统的偏置范围有限,或者探头的放大器不能容忍大的DC输入。


使用拥有充足带宽的探头

在选择拥有足够带宽的探头时,经验法则是:探头带宽应该是被测信号带宽的五倍。在评估简单的信号(如正弦波)和检定频域中发生的事件时,带宽是一个有效的指标。但是,大多数信号是复杂信号,包含许多频谱成分,频率值可能要比基础频率高出几个数量级。对随时间迅速变化、拥有快速转换速率(dv/dt)的信号,测量系统必须能够捕获这些事件随时间的变化,必须能够准确检定时域中发生的情况。上升时间是确定测量系统随时间变化效果的指标。在考虑测量系统评估上升沿和下降沿及捕获高阶谐波的能力时,上升时间是一个重要指标。许多时候,用户得出的结论是,由于信号“没那么快”,他们选择的探头带宽不足或者言过其实,因此他们选择的探头没有足够的上升时间功能。


看一下图5所示的纹波测量。通道2上所示的蓝色轨迹是使用P2220探头在1X衰减设置下捕获的。在1X衰减设置下,P2220提供了6MHz的带宽,上升时间指标<50ns。许多进行“电源”测量的用户认为6MHz已经足够快,因为6MHz在低于1MHz的开关频率上进行测量时带宽已远远足够。我们作为测量系统的一部分使用P2220探头,图5中检定的纹波特点表现得非常好。但是,使用低衰减、高带宽探头(TPP0502)在通道1上进行测量时,会得到完全不同的结果。P2220带宽低,掩盖了高频率信号成分。高亮度区域中的黄色轨迹显示了50mV的振铃。相比之下,使用P2220捕获的信号只显示了约5mV的振铃。

55.gif

图5:使用低带宽无源探头和高带宽无源探头捕获的快速边沿速率信号。


哪些探头适合进行低压测量?

进行低压测量的最佳探头是有源探头或差分探头(如泰克TDP1500差分探头),其可以选择1X和10X衰减范围。在

关键字: 低压测量 示波器 探头 编辑:什么鱼 引用地址: http://news.eeworld.com.cn/Test_and_measurement/ic494751.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
分享到:
微信 新浪微博 QQ空间 LinkedIn

上一篇:SR-8双踪示波器两线亮度相差过大的原因分析

下一篇:基于LabVIEW声卡的音频段虚拟信号发生器和双通道数字示波器

打开摩尔直播,更多新闻内容
半导体大咖直播分享高清观看
立即下载